PARDEE CENTER

Infrastructure Planning for the Port of Los Angeles: Case Study for Incorporating Climate Science into Planning Process

Robert Lempert

Director,

RAND Pardee Center for Longer Range Global Policy and the Future Human Condition

Climate Change Impacts on Transportation System

May 28, 2014

Overview

This study:

- Helped the Port of Los Angeles evaluate the extent to which potential extreme sea level rise ought to affect their infrastructure investment decisions
- Demonstrates a widely useful approach for including information on climate extremes in vulnerability and risk assessments

Managing Climate Risk Poses Both Analytic and Organizational Challenges

Climate-related decisions involve:

- Incomplete information from new, fast-moving, and sometimes irreducibly uncertain science
- Many different interests and values
- Long-time scales
- Near certainty of surprise

Public planning should be:

- Objective
- Subject to clear rules and procedures
- Accountable to public

How to make plans more robust and adaptable while preserving public accountability?

Iterative Risk Management is a Useful Framework for Climate Change Adaptation

Risk = Probability x
Consequence
But in general, both
terms are at best
known imprecisely

How best to include climate information in this process?

Our Climate is Changing in Sometimes Hard-to-Predict Ways

IPCC Fifth Assessment report multi-model projections of precipitation changes

Deep uncertainty occurs when the parties to a decision do not know or do not agree on the likelihood of alternative futures or how actions are related to consequences

Traditional Risk Assessment Methods Work Well When Uncertainty is Limited

"Agree on Assumptions" Approach"

But under conditions of deep uncertainty:

- Uncertainties are often underestimated
- Competing analyses can contribute to gridlock
- Misplaced concreteness can blind decisionmakers to surprise

Under Deeply Uncertain Conditions, Often Useful To Run the Analysis Backwards

"Agree on Assumptions"

What will future conditions be?

What is the best near-term decision?

How sensitive is the decision to the conditions?

"Agree on Decisions"

Proposed strategy

Identify vulnerabilities of this strategy

Develop strategy adaptations to reduce vulnerabilities

Robust Decision Making (RDM) Provides Such an "Agree on Decisions" Approach

RDM is iterative; analytics facilitate stakeholder deliberation

Yes. Hardening at the next upgrade is much less costly than discovering in the future that we are unprepared.

No. Our terminals are only vulnerable to *extreme* sea level rise and storm surge. Let's wait.

If We Harden at Next Upgrade, Do Net Benefits Exceed Costs?

Calculate net present value (NPV)

Cost Benefit Calculation Depends On Four Parameters About The Future

Each Parameter Could Take On A Plausible Range Of Values

Let's Examine The NPV of Hardening For Many Alternative Futures

Considered 500 Futures

Helps reduce gridlock:
Each stakeholder's expectations can be one of our futures.

Consider Range of Performance Over These Futures

Summarize Conditions Where Harden Strategy Passes Cost-Benefit Test

IF.

- Abrupt SLR > 14mm/yr
- Lifetime > 75 years
- Storminess change > +5%

THEN

Hardening at the next

Note: This information is something we can know with confidence – the conditions that matter most to our decision

Storm Surge

Min

Little Evidence to Suggest These Conditions Sufficiently Likely To Justify Hardening Terminals at Next Upgrade

Best science suggests
 likelihood of fast SLR < 16%

Use statistical fits to physically-based bounding analyses for maximum rates of sea level rise.

Little Evidence to Suggest These Conditions Sufficiently Likely To Justify Hardening Terminals at Next Upgrade

- Best science suggests
 likelihood of fast SLR < 16%
- No PoLA experience with lifetimes as long as 75 years
- No study suggests storminess increase of 5%

But for some PoLA infrastructure, hardening at the next upgrade may be appropriate

"Agree on Decisions" Approach to Climate Risk Management Facilitates Stakeholder Deliberation

Approach used for:

- Bureau of Reclamation Colorado Basin Supply and Demand Study
- Louisiana Master Plan for a Sustainable Coast
- World Bank
- Current work in Jamaica Bay

Dozens of workshops with many stakeholders over two years

Stakeholders
deliberate over
tradeoffs

Interactive Revised
visualizations instructions

Assess impacts
of alternative
responses

Planning Tool and Risk Assessment Model

Helps generate consensus on potential risks and provides structure for developing adaptive management plans

Observations

- Protecting critical infrastructure from hard-to-predict risks requires integrated and adaptive management
- Conducting the analysis "backwards (stress testing proposed strategies over many futures):
 - Helps reduce prediction bias and the risks of the surprise
 - Facilitates integrated planning
 - Helps open the process to stakeholder deliberation

More Information

R. Lempert, R Sriver, and K Keller. 2012. "Characterizing Uncertain Sea Level Rise Projections to Support Investment Decisions." California Energy Commission. CEC-500-2012-056

http://www.rand.org//pardee/

Thank you!